Functional Respiratory Imaging (FRI) and machine learning to predict organ rejection shortly after lung transplantation

M. LANCLUS, E. BARBOSA, J. LEE, W. VOS, F. FERREIRA, C. MUSSCHE, J. DE BACKER
FRI: A NOVEL BIOMARKER

FUNCTIONAL RESPIRATORY IMAGING

- Functional Respiratory Imaging (FRI)
 - High Resolution CT Thorax (HRCT)
 - Flow simulations (Computational Fluid Dynamics, CFD)

- Regional information
 - Lung structure (HRCT measurements)
 - Lung function (flow simulation)

- Reduction
 - Study sample size
 - Study time
FRI: A NOVEL BIOMARKER

Functional Respiratory Imaging (FRI) has been applied to:

- Asthma
- COPD
- ACOS
- IPF
- PH
- BPD
- SLEEP APNEA
- BOS
- SINUSITIS
FUNCTIONAL RESPIRATORY IMAGING (FRI)
Lung Structures and Zones

Functional Respiratory Imaging Endpoints

Ventilation

- $iVlobe = \text{image-based volume of the lobe in liters}$
- $iVlobe \text{ predicted} = \text{image-based volume of the lobe in %predicted}$
- $iVaw = \text{image-based airway volume}$
- $siVaw = \text{specific image-based airway volume}$
- $iSaw = \text{image-based airway surface area}$
- $iRaw = \text{image-based airway resistance}$

Perfusion and Tissue

Aerosol Deposition
Organ rejection, FRI and Artificial Intelligence
Study Design

- **Study**

41 patients
- 15 BOS developers
- 26 non-BOS developers
- All patients were considered non-BOS patients at baseline (first visit after transplantation) based on conventional clinical measures

205 parameters
- 8 clinical parameters (based on FEV₁ and FVC)
- 197 FRI parameters
PROCESS FOR BOS IDENTIFICATION

Collection of clinical and FRI parameters for all patients

Student t-tests for individual baseline parameters

Artificial Intelligence

BOS PHENOTYPE
PROCESS FOR BOS IDENTIFICATION

Collection of clinical and FRI parameters for all patients

Student t-tests for individual baseline parameters

Artificial Intelligence

BOS PHENOTYPE
PROCESS FOR BOS IDENTIFICATION

Collection of clinical and FRI parameters for all patients

Student t-tests for individual baseline parameters

Artificial Intelligence

BOS PHENOTYPE
STUDENT T-TEST ON BASELINE DATA

SINGLE PARAMETER PREDICTIONS

• **21 FRI parameters** at FRC are predictors for early stage BOS detection

• **2 FRI parameters** at TLC are predictors for early stage BOS detection

• **No clinical parameters** were able to predict eventual BOS development

• \(p < 0.05 \)
CONCLUSION

Eventual BOS developers have:

- significantly smaller lobe volumes at baseline,
- significantly smaller airway volumes at baseline,
- significantly smaller airway surfaces at baseline,
- significantly higher airway resistances at baseline

Onset of BOS?
Underexpansion of transplanted lung

BOS progression?
Increases in lobe and airway volumes, by a destruction of bronchioli caused by bronchiolitis obliterans
PROCESS FOR BOS IDENTIFICATION

Collection of clinical and FRI parameters for all patients

Student t-tests for individual baseline parameters

Artificial Intelligence

BOS PHENOTYPE
ARTIFICIAL INTELLIGENCE

MACHINE LEARNING: SUPPORT VECTOR MACHINES

- Machine learning uses retrospective data
 - Significant baseline parameter X_1

- BOS development

- non-BOS development

X_1
MACHINE LEARNING: SUPPORT VECTOR MACHINES

- Machine learning uses retrospective data
 - Significant baseline parameter X_2

- BOS development
- non-BOS development
MACHINE LEARNING: SUPPORT VECTOR MACHINES

- Machine learning uses retrospective data
- Machine learning tries to find the set of significant parameters that separates the classes best

- BOS development
- non-BOS development
MACHINE LEARNING: SUPPORT VECTOR MACHINES

- Machine learning uses retrospective data
- Machine learning tries to find the set of significant parameters that separates the classes best
- Machine learning tries to look for hyperplanes that classify data points into categories with the maximum margin
MACHINE LEARNING: SUPPORT VECTOR MACHINES

• Machine learning uses retrospective data
• Machine learning tries to find the set of significant parameters that separates the classes best
• Machine learning tries to look for hyperplanes that classify data points into categories with the maximum margin
• Once a model is constructed, new patients can be validated and a prediction can be made
MACHINE LEARNING: SUPPORT VECTOR MACHINES

- Validate Model?
 - Exclude one sample (test)
 - Make model with other samples (training)
 - Predict excluded sample
 - Repeat for all samples
 - Accuracy = % correctly predicted samples
 - = Leave One Out Cross Validation
MACHINE LEARNING - RESULTS

3 features (optimized for accuracy)

- **85,0% accuracy**
- **73,3% sensitivity**
- **92,3% specificity**

BEST PREDICTOR WITH 3 FEATURES

- **FRC**
- **iRaw of RUL**
- **Central iSaw**
- **TLC**
- **iVlobe of RML**
STUDY LIMITATIONS

- Limited patient sample size
- Single center study
- Retrospective study
- Inclusion of unilateral and bilateral transplants

➢ More studies will be performed to expand database for more robust predictions
STUDY CONCLUSIONS

Functional Respiratory Imaging in BOS

- BOS → heterogeneity in lung structure and function.
- Phenotype patients accurately → disease progression
- Study results:
 - 23 baseline FRI predictors
 - No baseline clinical predictors
 - Accuracy of 85.0% through Support Vector Machines.

- Functional Respiratory Imaging + AI
 - Novel biomarkers
 - Quantification of regional lung structure and function
 - Determine BOS developers in an early stage
ARTIFICIAL INTELLIGENCE, THE FUTURE OF MEDICINE?

FRI

PHENOTYPING

PERSONALIZED HEALTHCARE

PRECISION MEDICINE