

FRI

Functional Respiratory Imaging

Functional Respiratory Imaging (FRI) is a clinically meaningful and non-invasive measurement of the patient-specific respiratory system. A set of distinct biomarkers analyzes *exposure*, *structure and function* of the lungs and airways in any respiratory disease.

The usage of FRI biomarkers as endpoints in therapy development is scalable and easy to implement:

Image acquisition

The process starts
with the acquisition of
low dose,
high-resolution
computed tomography
(HRCT) scans of the
patient's thorax

Structure segmentation

Measurements are performed on the segmented 3-dimensional geometries from these scans

Flow simulation

Computational fluid dynamics (CFD) is used to quantify airflow and exposure to inhaled particles

OVERCOME

the difficulty of radiolabelling a compound and running expensive, timeconsuming scintigraphy studies

the inability to assess different scenarios within the same patient population simultaneously

THROUGH THE USE OF FRI IN

Deposition

Observational studies to assess real life lung exposure Phase I to support dose finding Phase II as part of safety or efficacy

Particle delivery optimization

Preclinical to optimize powder characteristics

Device delivery optimization

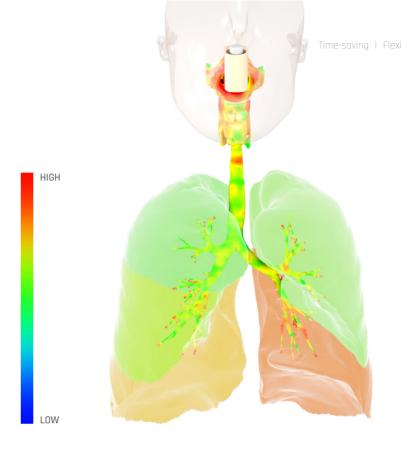
Preclinical to guide device selection

- **Avoid actively recruiting** patients
- Investigate how your device or particle (alternatives) affect(s) deposition in a controlled environment
- Assess the **influence of disease** on your device performance or aerosol deposition at a very early stage
- Easily assess how the device's or particle's performance is influenced by the way the patient inhales
- Assess many different scenarios (devices, APSD, populations, breathing profiles) and change each parameter independently
- Fully validated against scintigraphy and SPECT/CT for a multitude of different devices, compounds and diseases (De Backer, J. et al., 2010)

Phase IV to improve value proposition

1.75% difference from in vivo

When comparing aerosol deposition with scintigraphy and SPECT/CT

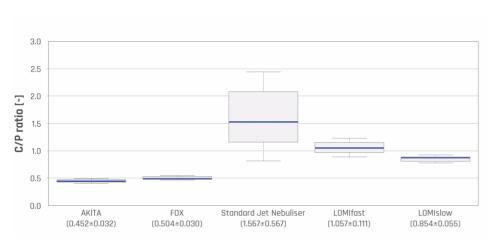

De Backer, J. et al., 2010 http://www.fluidda.com/index.php?p=1828

<6 weeks

is the average time in which clients receive their results after having delivered all input data

Internal BI analysis

TIME-SAVING FLEXIBLE VALIDATED


Zone	
Extrathoracic	68.67
Intrathoracic	1.43
Central	3.57
Peripheral	7.87
RUL	4.01
RML	1.66
RLL	8.48
LUL	5.23
LLL	7.37
Suspended	0.00

The regional concentration of an inhaled drug expressed as a percentage of delivered dose (yellow-red = high, blue-green = low). The colours of the lobes represent the peripheral deposition in that lobe.

RUL	right upper lobe
RML	right middle lobe
RLL	right lower lobe
LUL	left upper lobe
	left lower lobe

4 05

CASE STUDY >

Deposition patterns of different inhalation therapies in IPF patients

Describing delivery performance of a device in relation to a patient's condition and the use of lung deposition modeling to optimize delivery in idiopathic pulmonary fibrosis.

Smart nebulization using FAVORITE™ (long-slow-deep) inhalation offers several advantages:

- > Higher overall whole lung deposition
- Greatly enhanced targeting of small airways with Akita compared with the other devices
 CP ratio of Akita compared with jet and other devices is higher
- > Standard nebulizer is not as good at targeting the deep lung

Munro, S. et al., DDL 2017

CLIENT EXPERIENCE V

We have found FRI to be a really useful mechanism via which to explore the potential differences in lung deposition for different inhalation delivery systems in specific patient populations

Sandy Munro

Vice President Pharmaceutical Development at Vectura

06

OUR EXPERIENCE SINCE 2005 >

40+ Partnering pharmaceutical companies/hospitals 100+ Clinical centers trained worldwide 140+ Clinical studies 50+ Delivery optimization studies	•		•	•
140+ Clinical studies 50+ Delivery optimization studies	•	40+		•
50+ Delivery optimization studies	•	100+	Clinical centers trained worldwide	•
•	•	140+	Clinical studies	•
	•	50+	 Delivery optimization studies 	•
Disease characterization & Therapy analysis	•	90+	Disease characterization & Therapy analysis	•

